purely algebraic proof - перевод на русский
DICLIB.COM
Языковые инструменты на ИИ
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

purely algebraic proof - перевод на русский

THEOREM WHICH ASSERTS THE EXISTENCE OF AN OBJECT
Pure existence theorem; Purely existential proof
  • Geometrical proof that an irrational number exists: If the isosceles right triangle ABC had integer side lengths, so had the strictly smaller triangle A'B'C. Repeating this construction would obtain an infinitely descending sequence of integer side lengths.

purely algebraic proof      

математика

чисто алгебраическое доказательство

purely algebraic proof      
чисто алгебраическое доказательство
purely inseparable extension         
Purely inseparable field extension; Purely inseparable; Radicial extension; Purely inseparable extensions; Modular extension
чисто несепарабельное расширение

Определение

прототип
муж., ·*греч. первообраз, начальный, основной образец, истинник. Прототипный, -типический, первообразный, первообразцовый.

Википедия

Existence theorem

In mathematics, an existence theorem is a theorem which asserts the existence of a certain object. It might be a statement which begins with the phrase "there exist(s)", or it might be a universal statement whose last quantifier is existential (e.g., "for all x, y, ... there exist(s) ..."). In the formal terms of symbolic logic, an existence theorem is a theorem with a prenex normal form involving the existential quantifier, even though in practice, such theorems are usually stated in standard mathematical language. For example, the statement that the sine function is continuous everywhere, or any theorem written in big O notation, can be considered as theorems which are existential by nature—since the quantification can be found in the definitions of the concepts used.

A controversy that goes back to the early twentieth century concerns the issue of purely theoretic existence theorems, that is, theorems which depend on non-constructive foundational material such as the axiom of infinity, the axiom of choice or the law of excluded middle. Such theorems provide no indication as to how to construct (or exhibit) the object whose existence is being claimed. From a constructivist viewpoint, such approaches are not viable as it lends to mathematics losing its concrete applicability, while the opposing viewpoint is that abstract methods are far-reaching, in a way that numerical analysis cannot be.

Как переводится purely algebraic proof на Русский язык